Facultad de Matemáticas
40 años
home
Nuestra facultad
Programas
Admisión
Docencia
Investigación
Vinculación
Alumni
Contacto
Facultad Matemáticas
home
Nuestra facultad
Programas
Admisión
Investigación
Vinculación
Alumni
Contacto
Académicos de Jornada Completa
Académicos de Jornada Parcial
Personal Administrativo
Personal de Proyectos
Profesores Visitantes
Post Doctorados
Estudiantes de Postgrado
www.mat.uc.cl
Acerca de
Personas
Académicos de Jornada Completa
Mircea Petrache
Académicos de Jornada Completa
Académicos de Jornada Parcial
Personal Administrativo
Personal de Proyectos
Profesores Visitantes
Post Doctorados
Estudiantes de Postgrado
Mircea Petrache
Ph.D., ETH Zurich, 2013.
Profesor Asociado. Departamento de Matemática.
Oficina 142.
Teléfono +569 55044038.
mpetrache@mat.uc.cl
https://sites.google.com/site/mircpetrache/home
Áreas de Investigación
I am interested in
Calculus of Variations
,
PDEs
,
Geometric Measure Theory
, with special emphasis on interactions involving
Probability
,
Optimization
and
Geometry
, and on applications to
Physics
and
Computer Science
.
Point-like (or more complicated)
topological singularities
arising in
Nonlinear Sobolev Spaces
and
Gauge Theory
can be interpreted as
particles,
vortices, charges
or
defects.
I study the
asymptotic behavior
of minimizing configurations as the number of vortices increases. The sharp asymptotics appearing in these studies are relevant in
Approximation theory
, in
Statistical Physics
and in
Random Matrix theory.
At the moment I am especially interested in
uniformization/crystallization phenomena,
where for large numbers of points one can prove/quantify that the configurations show an emergent collective behavior, and come close to forming
lattice-like structures
.
New
notions of curvature
seem to arise in the study of these asymptotics.
Related to the previous point is also the study of asymptotics of a large number of
quantum particles
, which is relevant to the computations of shapes of large molecules via
Density Functional Theory
. Here a
multimarginal Optimal Transportation
problem with an exotic cost appears, and I'm interested in the asymptotics and behavior as the number of marginals grows to infinity.
The appearance of collective behavior allows to make rigorous the
link between micro- to macroscopic properties
in fluids, solids and gases. Here the goal is to rigorously deduce the macroscopic properties in physically realistic situations, such as for a moving droplet of liquid.