We study the following quasilinear elliptic equation
$$ -\Delta_p u + a(x) u^{p-1} + b(x)g(u)=0 \quad \text{in } \mathbb{R}^N \quad \quad \quad \text{(E)} $$
where $p>1$, $a,b \in L^\infty(\mathbb{R}^N)$, $b\geq 0,b\not\equiv0$ and $g \geq 0$. Under some conditions on $a$ and $g$, we provide a criterion in terms of \textit{generalized principal eigenvalues} for the existence/non-existence of positive weak solutions of (E). We also discuss the uniqueness of positive weak solutions of (E).