El departamento de estadística de la pontificia universidad católica de chile tiene unos de los cuerpos académicos más grandes y destacados de las universidades chilenas y latinoamericanas, en su búsqueda por la interrelación regional de los diferentes investigadores del área de estadística y afines, el departamento de estadística busca organizar un seminario local que permita conocer de cerca el trabajo realizado por los investigadores regionales, así como también conocer los problemas actuales en investigación de los académicos de la UC, con la intención de posibilitar puentes de futuras colaboraciones.
We introduce two new approaches to clustering categorical and mixed data: Condorcet clustering with a fixed number of groups, denoted $$\alpha$$-Condorcet and Mixed-Condorcet respectively. As k-modes, this approach is essentially based on similarity and dissimilarity measures. The presentation is divided into three parts: first, we propose a new Condorcet criterion, with a fixed number of groups (to select cases into clusters). In the second part, we propose a heuristic algorithm to carry out the task. In the third part, we compare $$\alpha$$ -Condorcet clustering with k-modes clustering and Mixed-Condorcet with k-prototypes. The comparison is made with a quality’s index, accuracy of a measurement, and a within-cluster sum-of-squares index.
Our findings are illustrated using real datasets: the feline dataset, the US Census 1990 dataset and other data.