Seminario de Sistemas Dinámicos

El Seminario de Sistemas Dinámicos de Santiago es el encuentro semanal de matemáticas con mayor tradición en el país pues se realiza ininterrumpidamente desde la década del '80. Se realiza alternadamente en alguna de las instituciones de Santiago donde hay miembros del grupo de Sistemas Dinámicos. Participan así las universidades de Chile, de Santiago, Andrés Bello y Católica de Chile.

 

2009-10-05
Hector Hardy Pastén. Universidad de Concepción
El Problema de Büchi y el Decimo Problema de Hilbert Para Funciones Meromorfas P-Adicas
Sala 2 (Víctor Ochsenius) Facultad de Matemáticas PUC - 16:30 Hrs.
2009-09-21
Gonzalo Contreras. Cimat México
Minicurso Dinámica Lagrangeana
Sala 3 (sector postgrado) - Facultad de Matemáticas - 16:30 Hrs.
Abstract:
Las siguientes sesiones se realizarán los días 23, 25, 28 y 30 de septiembre en el mismo lugar y a la misma hora."
2009-09-14
Daniel Smania. Icmc-Usp (San Carlos), Brasil
On infinitely cohomologous to zero observables
Sala 2 (Víctor Ochsenius)- Facultad de Matemáticas PUC.
Abstract:
Resumen: We show that for a large class of piecewise expanding maps
T, the bounded p-variation observables u_0 that admits an infinite
sequence of bounded p-variation observables u_i satisfying u_i(x)=
u_{i+1}(Tx) -u_{i+1}(x) are constant. The method of the proof consists
in to find a suitable Hilbert basis for L^2(hm), where hm is the
unique absolutely continuous invariant probability of T. In terms of
this basis, the action of the Perron-Frobenious and the Koopan
operator on L^2(hm) can be easily understood. This result generalizes
earlier results by Bamon, Kiwi, Rivera-Letelier and Urzua in the case
T(x)= n x mod 1, n in N-{0,1} and Lipchitizian observables u_0. This a
joint work with Amanda de Lima.
2009-08-26
Laurent Bartholdi. University de Göttingen
Insanely Twisted Rabbits
Sala 3 (sector postgrado) Facultad de Matemáticas de la PUC.
2009-08-24
Helge Gloeckner. Universitat Paderborn
Invariant manifolds for ultrametric dynamical systems and applications in Lie theory
Sala 2 (Víctor Ochsenius), Facultad de Matemáticas - UC. 16:00 Hrs.
Abstract:
Resumen:
Consider a diffeomorphism f: M-> M of a manifold M over a complete ultrametric field (like the p-adic numbers)
and a fixed point, x, of f. Then one can construct the usual types of invariant manifolds around x, as familiar
from the case of manifolds over the real numbers. These studies were motivated by questions concerning Lie groups
over local fields. They allow results to be extended to the case of Lie groups over local fields of positive characteristic,
which previously were only known in the case of zero characteristic (i.e., only for p-adic Lie groups).
2009-08-24
Mike Todd. Universidade Do Porto.
Recurrence and Extreme Value Theory in Dynamical System
Sala 2 (Víctor Ochsenius), Facultad de Matemáticas - UC 17:15 Hrs.
2009-08-17
Alejandro Maass. Dim-Cmm U de Chile
A structure theorem in topological dynamics and applications to nilsequences and maximal nilfactors
Sala múltiple B del CENI-USACH
Abstract:
Resumen: In this talk we present a characterization of (inverse limits of) nilsystems of any order by introduciong the notion of
dynamical parallelepiped. This characterization is used to give a (kind of) local characterization of nilsequences and provide a way to construct maximal nilfactors of a topological dynamical systems in the espirit of the structure theorem by Host and Kra used to prove non conventional ergodic theorems in measurable dynamics.
2009-08-10
Michael Schraudner. Cmm-Udechile
Projectional entropy of multidimensional shifts.
Sala de Seminarios 7mo piso del CMM-UdeChile
Abstract:
Resumen:
We define the projectional entropy of multidimensional shifts with respect to any lower-dimensional sublattice and investigate under which conditions this quantity equals the topological entropy of the original shift. Constructing a three dimensional shift of finite type which satisfies a uniform mixing condition we exhibit a subtle difference between the results for one-dimensional and higher-dimensional sublattices.

The presented results are contained in a paper recently accepted for publication in Discrete and Continuous Dynamical Systems which is also available from my web-page.
2009-07-20
Thomas Jordan. University of Warwick
Hausdorff Dimension of Projections of Self-Affine Carpets.
Sala 2 (Víctor Ochsenius) - 16:00 Hrs. Facultad de Matemáticas - UC
2009-06-08
Feliks Przytycki. Impan Polonia
On The Hausdorff Dimension Spectrum for Characteristic Lyapunov Exponents for Iteration of Rational Maps on The Riemann Sphere
Sala 2 (Víctor Ochsenius) - 16:30 Hrs. Facultad de Matemáticas - UC
2009-06-01
Jan Kiwi, PUC. Pontificia Universidad Católica de Chile
Dinámica Compleja y Dinámica Sobre el Cuerpo de Series de Puiseux: Aplicaciones Racionales Cuadráticas
Sala 2 (Vìctor Ochsenius) - Facultad de Matemáticas - 16:30 Hrs.
2009-05-25
Andres Navas. Universidad de Santiago de Chile
Como Ordenar Trenzas
USACH - Sala por confirmar
2009-05-11
Juan Rivera Letelier. Pontificia Universidad Católica de Chile
Statistical properties of real and complex one-dimensional dynamical systems
Sala 2 (Vìctor Ochsenius) - Facultad de Matemáticas - 16:30 Hrs.
Abstract:
"				
2009-04-27
Carlos Vasquez. Universidad Católica de Valparaiso
Sobre la abundancia de medidas físicas para difeomorfismosparcialmente hiperbólicos
USACH, sala por avisar.
Abstract:
2009-04-24
Irene Inoquio
Estados de Equilibrio Con Potenciales Holder de Aplicaciones en Dimensión 1
Sala 7 del CAI, Usach.
2009-04-20
Ronnie Pavlov. British Columbia, Canadá
Estimating the entropy of a Z^d shift of finite type with probabilistic methods
Sala de Seminarios CMM - 17:00 Hrs.
Abstract:
2009-04-13
Gerardo Honorato. Universidad de Santiago de Chile
On the topology of Julia sets of root-finding algorithms
Sala 2 (Vìctor Ochsenius) - Facultad de Matemáticas - 16:30 Hrs.
Abstract:
Abstract: We prove that the Julia set of Koenig’s root-finding algorithms applied to polynomials is not always connected (excluding Newton’s method). We will also show examples of non connected Julia sets of Koenig’s root-finding algorithms applied to rational maps (including Newton’s method). In addition, we give an example of Julia set of Newton’s method for multiple roots applied to one specific cubic polynomial which is a four circle inversion.
2009-04-06
Genadi Levin. Hebrew University
Multipliers of Periodic Orbits.
Sala 2 (Víctor Ochsenius) - Fac. de Matemáticas - 16:30 Hrs.
Abstract:
2009-03-25
Pär Kurlberg. (Kth)
Cursillo: Introduction to quantum ergodicity and arithmetic quantum maps
Sala D303 - Bachillerato- UC
Abstract:

El Cursillo se realizará los días Miércoles 25, Jueves 26 y viernes 27 de marzo de 2009 - 16:30 Hrs.

Resumen: The quantum mechanical counterpart to classical ergodicity is that eigenfunctions of the quantized Hamiltonian (stationary states)
should be equidistributed in a certain sense. If a dynamical system is classically ergodic, Schnirelman´s theorem asserts that most
stationary states are equidistributed. However, subsequences of exceptional eigenfunctions (scars) cannot be ruled out. On the other
hand, for some systems it seems reasonable to expect that no exceptional eigenfunctions exist, so called Quantum Unique Ergodicity
(QUE). Other expected consequences of classical chaos is that the value distribution of eigenfunctions, as well as the value
distribu

2009-03-23
Joseph Silverman. Brown University
Specialization Theorems in Dynamics
Auditorio Ninoslav Bralic -15:30 Hrs - Facultad de Matemáticas
Abstract:
Abstract: A common mathematical problem is to take a family of objects (spaces, maps, etc.) and ask to what extent the particular members of the
family retain the properties of the family as a whole. For example,
let F(T;z) be a one-parameter family of rational functions of degree
at least two, a typical example being F(T;z) = z2 + T. Further let
P(T) be a one-parameter family of initial points with the property
that P(T) has infinite forward orbit under iteration of F(T;z). If
F(T;z) and P(T) have coefficients in a number field K, then one can
show that there are only finitely many t in K such that the
specialized point P(t) has finite order under iteration of the
specialized map F(t;z). This is a typical specialization theorem. In
this talk I will discuss this theorem, give an application to
post-critically finite maps, and describe conjectural analogues for
higher-dimensional families.