El Seminario de Teoría de Números en la UC está dirigido a estudiantes de pregrado y postgrado que estén interesados en el área. El objetivo será presentar variados temas dentro de la teoría de números de una manera autocontenida, para así mostrar a los estudiantes los temas que actualmente son de interés para los teoristas de números. Los expositores serán voluntarios dentro de los participantes del seminario.Página web: https://www.mat.uc.cl/~natalia.garcia/stn.html
An elliptic curve is a plane curve defined by a cubic equation. Determining whether such an equation has infinitely many rational solutions has been a central problem in number theory for centuries, which lead to the celebrated conjecture of Birch and Swinnerton-Dyer. Within a family of elliptic curves (such as the Mordell curve family $y^2=x^3+d$), a conjecture of Goldfeld further predicts that there should be infinitely many rational solutions exactly half of the time. We will start with a history of this problem, discuss our joint work with D. Kriz towards Goldfeld's conjecture and illustrate the key ideas and ingredients behind these new progresses.