En esta charla probaremos el teorema de Boudet-Comon, el cual mediante una construcción de AFD’s permite concluir la decibilidad de la teoría $$\mathfrak{N} = (\mathbb{N}, S, \leq, +)$$ ampliamente conocida como aritmética de Presburger.
En esta charla abordaremos la decidibilidad de ciertas teorías aritméticas bajo el esquema de teoría de autómatas, viendo sus conceptos fundamentales y su relación con lenguajes regulares, concluyendo el teorema de Myhill-Nerode.