Seminario de Lógica Matemática

El seminario está dirigido a estudiantes de pregrado y posgrado interesados en los fundamentos de la matemática, teoría de modelos y teoría de computabilidad. El objetivo es profundizar en conceptos y teoremas relacionados con lenguajes formales, lógica algebraica y decidibilidad. 

Durante el primer semestre de 2025 estaremos haciendo sesiones de estudio centradas en teoría de la demostración (o proof theory). 
Las reuniones son todos los jueves a las 16:10, en la sala 1 del edificio Rolando Chuaqui. 

El siguiente drive contiene material relativo al desarrollo de las sesiones:

https://drive.google.com/drive/folders/1xAmcDzXu6gQ-THBst1pKOQ5GHlCiHK0I





2024-04-11
16:10hrs.
Luis Cofré. PUC
Autómatas para la Decibilidad de Teorías Aritméticas I: La Teoría de Autómatas
Sala Multiusos (2° Piso)
Abstract:

En esta charla abordaremos la decidibilidad de ciertas teorías aritméticas bajo el esquema de teoría de autómatas, viendo sus conceptos fundamentales y su relación con lenguajes regulares, concluyendo el teorema de Myhill-Nerode.

2024-04-09
16:10hrs.
Benjamín Oyarzún. Rwth Aachen Universität
Cálculo de Secuentes de Gentzen e Indecibilidad
Sala Multiusos (Piso 2)
Abstract:
En este seminario se pretende demostrar la inexistencia de un programa capaz de decidir la satisfacibilidad de una fórmula sin variables libres en la lógica de primer orden, es decir, no existe un programa que pueda demostrar o refutar conjeturas matemáticas arbitrarias en el contexto de FO.
2024-04-04
16:10hrs.
Renato Lewin. PUC
Algebrización de la Lógica II
Sala Multiusos
Abstract:
En esta charla desarrollaremas las herramientas para generalizar el proceso de Lindenbaum-Tarski estudiado la vez anterior a otros sistemas lógicos clásicos y no clásicos
2024-03-21
16:10hrs.
Renato Lewin. PUC
Algebrización de la Lógica I
Sala 2, Edificio Rolando Chuaqui
Abstract:
Las oraciones de la lógica proposicional clásica verifican una serie de propiedades algebraicas simlilares a las de los números. Esto sugiere hacer un tratamiento algebraico de la lógica. Adelantándose a su tiempo George Boole sentó las bases de este estudio. Ya en el siglo XX, Alfred Tarski hizo la construcción general que asocia este cálculo proposicional con una clase de álgebras que se denominan álgebras de Boole.

En esta charla estudiaremos con cierto detalle esta relación.